Synthesis of 2-Aminopentafluoro-1,4-naphthoquinone Derivatives

L. I. Goryunov ${ }^{a}$, N. M. Troshkova ${ }^{a}$, G. A. Nevinskii ${ }^{b}$, and V. D. Shteingarts ${ }^{a, c}$
a Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Division, Russian Academy of Sciences, pr. Akademika Lavrent'eva 9, Novosibirsk, 630090 Russia e-mail: shtein@nioch.nsc.ru
${ }^{b}$ Institute of Chemical Biology and Fundamental Medicine, Siberian Division, Russian Academy of Sciences, Novosibirsk, Russia
${ }^{c}$ Novosibirsk State University, Novosibirsk, Russia

Received May 13, 2008

Abstract

Potential biologically active derivatives of 2-aminopentafluoro-1,4-naphthoquinone modified at the amino group were synthesized in $32-96 \%$ yield by reactions of hexafluoro-1,4-naphthoquinone with nitrogencentered nucleophiles.

DOI: 10.1134/S1070428009060050

1,4-Naphthoquinone derivatives exhibit versatile physiological activity. For example, naturally occurring or synthetic compounds known as vitamins $\mathrm{K}_{1}-\mathrm{K}_{7}$ are efficient blood coagulants [1], while mono- and diaminonaphthoquinone derivatives display antimalarial [2] and antitumor activity [3]. Such compounds as 2-(2-hydroxyethylsulfanyl)-3-methyl- and 2,3-bis(2-hydroxyethylsulfanyl)-1,4-naphthoquinones were also shown to inhibit growth of tumor cells, and the effect of their tetrafluoro-substituted analogs Ia and $\mathbf{I b}$ was even stronger [4, 5].

la

lb

Compounds Ia and Ib were synthesized by replacement of fluorine atoms in 2-methylpentafluoroand hexafluoro-1,4-naphthoquinones II and III by the action of 2-sulfanylethanol or its tetrahydropyran-2-yl ether, respectively, in methanol at room temperature [4, 5]. It was shown previously that fluorine atom in the quinone fragment is readily replaced by the action of methylene bases derived from nitrogen-containing heterocycles (compound III) [6] or sodium methoxide [2-(heptafluoronaphthalen-1-yloxy)pentafluoro-1,4naphthoquinone (IIa)] [7]. Numerous examples of
halogen replacement in chloro- and fluoroanil and 2-chloro- and 2,3-dichloro-1,4-naphthoquinone upon treatment with amines, alcohols, and other nucleophiles [8] have been reported. The above data illustrate prospects in using such reactions for the synthesis of potential biologically active polyfluorinated 1,4-naphthoquinone derivatives.

In the present communication we report on reactions of fluorinated 1,4-naphthoquinone III with aliphatic and aromatic amines with a view to obtain 2-aminopentafluoro-1,4-naphthoquinone derivatives as potential cell growth inhibitors and starting compounds for the preparation of polyfunctionalized fluorine-containing 1,4-naphthoquinones. The reactions of quinone III with primary and secondary amines were performed using 1.1-1.8 equiv of nucleophile, and their progress was monitored by ${ }^{19} \mathrm{~F}$ NMR spectroscopy.
tert-Butylamine, 2-methylsulfanylethanamine, and 2 -aminoethanol reacted with compound III at room temperature to give the corresponding 2-(alkylamino)-pentafluoro-1,4-naphthoquinones IV-VIII (Scheme 1). In the reaction with ethylamine, 2-ethylaminopenta-fluoro-1,4-naphthoquinone (IV) was obtained in 97% yield in 2 h . The reaction mixture obtained from quinone III and butylamine contained (after 3 h) $\sim 70 \%$ of 2-(butylamino)pentafluoro-1,4-naphthoquinone (V), $\sim 15 \%$ of di- and triamino-substituted quinones (assumingly), and $\sim 15 \%$ of initial quinone III. The reaction of III with tert-butylamine gave in $2 \mathrm{~h} \sim 80 \%$ of

Scheme 1.

$\mathbf{I V}-\mathbf{I X}, \mathrm{R}^{1}=\mathrm{H} ; \mathbf{I V}, \mathrm{R}^{2}=\mathrm{Et} ; \mathbf{V}, \mathrm{R}^{2}=\mathrm{Bu} ; \mathbf{V I}, \mathrm{R}^{2}=t$-Bu; VII, $\mathrm{R}^{2}=\mathrm{MeSCH}_{2} \mathrm{CH}_{2} ; \mathbf{V I I I}, \mathrm{R}^{2}=\mathrm{HOCH}_{2} \mathrm{CH}_{2} ; \mathbf{I X}, \mathrm{R}^{2}=\mathrm{Ph} ;$ $\mathbf{X}, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Et} ; \mathbf{X I}, \mathrm{R}^{1} \mathrm{R}^{2} \mathrm{~N}=$ morpholino; XII, $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{HOCH}_{2} \mathrm{CH}_{2} ; \mathbf{X I I I}, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{HOCH}_{2} \mathrm{CH}_{2}$.

2-(tert-butylamino)pentafluoro-1,4-naphthoquinone (VI) and $\sim 20 \%$ of quinone III. The fraction of compound VI did not increase when the reaction time was extended to 24 h , but in this case the reaction mixture contained (in addition to initial quinone III) $\sim 10 \%$ of products resulting from subsequent transformations of quinone VI. Compounds V and VI were isolated by preparative thin-layer chromatography in 63 and 62% yield, respectively.

The reaction of quinone III with 2-methylsulfanylethanamine (2 h) gave 94% of 2-[2-(methylsulfanyl)-ethylamino]pentafluoro-1,4-naphthoquinone (VII). In the reaction with 2-aminoethanol, 2-(2-hydroxyethyl-amino)pentafluoro-1,4-naphthoquinone (VIII) was smoothly formed in 89% yield in 3 h . Quinone III reacted with aniline at $20^{\circ} \mathrm{C}$ to give in 15 h 2 -(phenylamino) pentafluoro-1,4-naphthoquinone (IX, $\sim 90 \%$) and products of its further transformations ($\sim 10 \%$). Compound IX was isolated in 62% yield by thin-layer chromatography.

Likewise, quinone III readily reacted with secondary amines. 2-Diethylaminopentafluoro-1,4-naphthoquinone (\mathbf{X}) was obtained in 96% yield by reaction of III with 1.5 equiv of diethylamine (reaction time 2 h). Analogous reaction with morpholine at a ratio of 1:1.5 (2 h) led to the formation of 2-morpholinopentafluoro-1,4-naphthoquinone (XI) whose concentration in the reaction mixture was $\sim 70 \%$ (preparative yield 59%); the reaction mixture also contained $\sim 30 \%$ of products resulting from its further transformations. 2-[2-Hy-droxyethyl(methyl)amino]pentafluoro-1,4-naphthoquinone (XII) was isolated in 87% yield from the product mixture obtained by reaction of quinone III with 1.8 equiv of 2-methylaminoethanol (2.5 h). In the reaction of III with $2,2^{\prime}$-iminodiethanol (reactant ratio 1:1.5), 2-[bis(2-hydroxyethyl)amino]pentafluoro-1,4naphthoquinone (XIII) was formed; after 3.5 h , its concentration was $\sim 70 \%$ (yield 32%); also, $\sim 15 \%$ of the initial quinone and some other products were present in the reaction mixture.

Obviously, reactions of III with difunctional nucleophiles, such as 2 -aminoethanol, 2-methylaminoethanol, and 2,2'-iminodiethanol, could follow two concurrent pathways leading to the formation of both aminoand hydroxydefluorination products. To confirm the structure of the isolated compounds, quinone III was subjected to methanolysis which afforded 65% of 2-methoxypentafluoro-1,4-naphthoquinone (XIV) (Scheme 2).

Scheme 2.

The chemical shift of 3-F ($\delta_{\mathrm{F}} 17.5 \mathrm{ppm}$) in the ${ }^{19}$ F NMR spectrum of XIV considerably differed from those observed in the spectra of 2-amino derivatives VIII, XII, and XIII ($\delta_{\mathrm{F}}-0.01$ to 6.8 ppm ; see table). Moreover, the latter values approach the chemical shifts of 3-F for quinones IV, V, VII, and XV obtained from primary amines. An exception is compound VI having a relatively large tert-butylamino group ($\delta_{\mathrm{F}} 16.5 \mathrm{ppm}$). The structure of VIII was confirmed by the ${ }^{1} \mathrm{H}$ NMR spectrum which contained signals from both NH and OH protons. In the ${ }^{1} \mathrm{H}$ NMR spectrum of XII, the NCH_{3} signal was split due to coupling with the fluorine atom in position $3\left(J_{\mathrm{HF}}=4.8 \mathrm{~Hz}\right)$; analogous coupling was also observed for the methoxy protons in the spectrum of XIV $\left(J_{\mathrm{HF}}=5.0 \mathrm{~Hz}\right)$. Likewise, quinone XIII was assigned the structure corresponding to replacement of fluorine by the nucleophilic nitrogen center. We can conclude that aminoethanols act as just N -centered nucleophiles in reactions with quinone III. This conclusion is consistent with the results of the reaction of hexafluorobenzene with 2-aminoethanol, reported in [9].
${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{NMR}$ spectra of polyfluoro-1,4-naphthoquinone derivatives in CDCl_{3}

Comp. no.	${ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}(J, \mathrm{~Hz})$	${ }^{19} \mathrm{~F}$ NMR spectrum, $\delta_{\mathrm{F}}, \operatorname{ppm}(J, \mathrm{~Hz})$		
		2-F, 3-F	5-F, 8-F	6-F, 7-F
II	$2.50 \mathrm{~d}\left(3 \mathrm{H}, \mathrm{CH}_{3}, J=3.6\right)$	48.7	25.0, 25.8	19.3, 18.1
IIa		27.6	25.0	17.7
IIb	$6.70 \mathrm{~d}(1 \mathrm{H}, J=9.7)$	51.0	24.0, 25.0	18.0, 16.5
IIc	4.2		25.9	18.5
IId		36.9	25.8	18.8
III		22.1	25.5	18.6
IV	$\begin{aligned} & 5.39 \text { br.s }(1 \mathrm{H}, \mathrm{NH}), 3.58 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.29 \mathrm{~d} . \mathrm{t} \\ & \left(3 \mathrm{H}, \mathrm{CH}_{3}, J=7.2,0.9\right) \end{aligned}$	$5.3 \mathrm{br} . \mathrm{s}$	$J_{5,6}, J_{6,7}, J_{7,8}=19.7-19.8 ; J_{5,7}, J_{5,8}, J_{6,8}=10.1-12.1$	
V	$\begin{aligned} & 5.44 \text { br.s }(1 \mathrm{H}, \mathrm{NH}), 3.51 \text { d.d.t }\left(2 \mathrm{H}, \mathrm{CH}_{2}, J=\right. \\ & 3.3,7.0,6.6), 1.60 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.38 \mathrm{~m}(2 \mathrm{H}, \\ & \left.\mathrm{CH}_{2}\right), 0.93 \mathrm{t}\left(3 \mathrm{H}, \mathrm{CH}_{3}, J=7.2\right) \end{aligned}$	5.8 br.s	$\begin{aligned} & 24.2 \text { d.d.d, } 25.8 \text { d.t } \mid 19.8 \text { d.d.t }(J=4.5), 15.0 \text { d.t } \\ & J_{5,6}, J_{6,7}, J_{7,8}=19.4-20.1 ; J_{5,7}, J_{5,8}, J_{6,8}=10.8-12.7 \end{aligned}$	
VI	5.74 br.s (1H, NH), $1.43 \mathrm{~s}(9 \mathrm{H}, t-\mathrm{Bu})$	16.5 br.c	$\begin{aligned} & \begin{array}{l} 24.2 \text { d.d.d }(J=2.0), \\ 26.0 \text { d.t } \end{array} \\ & J_{5,6}, J_{6,7}, J_{7,8}=19.8 \text { d.d.t }(J=4.5), 15.1 \text { d.t } \\ & \hline 19.8 ; J_{5,7}, J_{5,8}, J_{6,8}=10.1-12.3 \end{aligned}$	
VII	$\begin{aligned} & 5.80 \text { br.s }(1 \mathrm{H}, \mathrm{NH}), 3.73 \text { d.d.t }\left(2 \mathrm{H}, \mathrm{CH}_{2}, J=\right. \\ & 2.6,6.4,6.6), 2.76 \mathrm{t}\left(2 \mathrm{H}, \mathrm{SCH}_{2}, J=6.6\right), \\ & 2.13 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right) \end{aligned}$	6.7 br.s	$\begin{aligned} & 24.4 \text { d.t, } 26.1 \text { d.t } \quad 19.9 \text { d.d.t }(J 4.4), 15.4 \text { d.t } \\ & J_{5,6}, J_{6,7}, J_{7,8}=19.6 ; J_{5,7}, J_{5,8}, J_{6,8}=9.8-12.0 \end{aligned}$	
VIII	$\begin{aligned} & 5.80 \text { br.s }(1 \mathrm{H}, \mathrm{NH}), 3.87 \mathrm{t}\left(2 \mathrm{H}, \mathrm{CH}_{2}, J=4.9\right) \text {, } \\ & 3.70 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.68 \mathrm{~s}(1 \mathrm{H}, \mathrm{OH}) \end{aligned}$	6.8 br.s	$\begin{aligned} & 24.3 \text { d.t, } 26.0 \text { d.t } \quad 19.8 \text { d.d.t }(J=4.2), 15.4 \text { d.t } \\ & J_{5,6}, J_{6,7}, J_{7,8}=19.3-19.7 ; J_{5,7}, J_{5,8}, J_{6,8}=10.4-12.1 \end{aligned}$	
IX	$\begin{aligned} & 7.34-7.42 \mathrm{~m}(2 \mathrm{H}, \mathrm{CH}), 7.20-7.27 \mathrm{~m}(1 \mathrm{H}, \mathrm{CH}), \\ & 7.09-7.17 \mathrm{~m}(2 \mathrm{H}, \mathrm{CH}) \end{aligned}$	28.1 br.s	$\begin{aligned} & 24.9 \text { d.t, } 26.6 \text { d.t } \quad 20.2 \text { d.d.t }(J=4.5), 16.3 \text { d.t } \\ & J_{5,6}, J_{6,7}, J_{7,8}=19.2-20.1 ; J_{5,7}, J_{5,8}, J_{6,8}=10.8-12.7 \end{aligned}$	
X	$\begin{aligned} & 3.45 \text { d.q }\left(4 \mathrm{H}, \mathrm{CH}_{2}, J=1.9,7.0\right), 1.26 \text { d.t }(6 \mathrm{H}, \\ & \left.\mathrm{CH}_{3}, J=0.6,7.0\right) \end{aligned}$	18.7 br.s	$\begin{aligned} & \left.\begin{array}{l} 22.7 \text { d.d.d, } \\ 22.9 \text { d.d.d } \\ J_{5,6}, J_{6,7}, J_{7,8}=18.7-19.7 ; J_{5,7}, J_{6,8}=9.3-10.7 \end{array} \right\rvert\, 17.4 \text { d.d.t }(J 3.8), 15.1 \\ & \hline \end{aligned}$	
XI	$3.85 \mathrm{t}\left(4 \mathrm{H}, \mathrm{CH}_{2}, J=4.7\right), 3.56 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{CH}_{2}\right)$	23.5 br.s	$23.9 \mathrm{~m}(2 \mathrm{~F})$	$18.3 \mathrm{~m}, 16.4 \mathrm{~m}$
XII	4.34 d.t ($1 \mathrm{H}, \mathrm{CH}_{2}, J=3.7,9.7$), 4.22 br.s (1 H , $\mathrm{OH}), 3.97-4.17 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.32 \mathrm{~d}(3 \mathrm{H}$, $\left.\mathrm{CH}_{3}, J=4.8\right), 3.16$ d.t ($1 \mathrm{H}, \mathrm{CH}_{2}, J=3.7$, 11.9)	$\begin{aligned} & -1.38 \mathrm{q} \\ & (J=4.8) \end{aligned}$	20.8 d.d.d, 23.1 d.d.d $J_{5,6}, J_{6,7}, J_{7,8}=19.2-20.1 ; ~$$J_{5,7}, J_{5,8}, J_{6,8}=4.8-13.3$	
XIII ${ }^{\text {a }}$	$3.40-4.35 \mathrm{~m}$	$-0.01 \mathrm{~s}$	$\begin{array}{\|l\|l} \begin{array}{l} 19.9 \text { d.d.d, } 26.6 \\ \text { d.d.d } \end{array} & 11.9 \text { d.t, } 7.3 \text { d.t } \\ J_{5,6}, J_{6,7}, J_{7,8}=19.9-20.1 ; J_{5,7}, J_{5,8}, J_{6,8}=4.5-13.3 \end{array}$	
XIV	$4.30 \mathrm{~d}\left(3 \mathrm{H}, \mathrm{CH}_{3}, J=4.9\right)$	17.5 m	$\begin{aligned} & 25.3 \text { d.t, } 25.9 \text { d.t } \\ & J_{5,6}, J_{6,7}, J_{7,8}=19.4- \end{aligned}$	$\begin{aligned} & 19.2 \text { d.d.t }(J=3.9), 18.4 \text { d.t } \\ & .8 ; J_{5,7}, J_{5,8}, J_{6,8}=11.3-12.2 \end{aligned}$
$\mathbf{X V}{ }^{\text {b }}$	$\begin{aligned} & 7.30 \text { br.s }(1 \mathrm{H}, \mathrm{NH}), 3.70 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.90 \mathrm{t} \\ & \left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}, J=6.7\right) \end{aligned}$	4.22 s	$\begin{aligned} & 21.2 \text { d.d.d, } 23.4 \text { d.t } \\ & J_{5,6}, J_{6,7}, J_{7,8}=20.7 \end{aligned}$	$\begin{aligned} & 17.4 \text { d.d.t }(J=4.4), 13.6 \text { d.t } \\ & 5,7, J_{5,8}, J_{6,8}=8.9-11.7 \end{aligned}$
$\mathbf{X V I}{ }^{\text {b }}$	8.80 d.m, 8.60 t.t $(J=10.3,55.2), 8.20 \mathrm{~m}$		$\begin{aligned} & 20.4 \text { d.d.d, } 21.9 \text { d.t } \\ & J_{5,6}, J_{6,7}, J_{7,8}=18.7- \end{aligned}$	16.5 d.t, 11.4 d.t $.3 ; J_{5,7}, J_{5,8}, J_{6,8}=8.3-12.8$

[^0]RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 45 No. 62009

In the ${ }^{1} \mathrm{H}$ NMR spectra of quinones XII and XIII, signals from the methylene protons (obviously, this applies to only one $\mathrm{CH}_{2} \mathrm{CH}_{2}$ fragment in XIII) give rise to a more complex pattern, as compared to quinone VIII, indicating nonequivalence of protons in each methylene group. By analogy with the data for 2-[bis(2-hydroxyethyl)amino]- and 2-[2-hydroxyethyl-(methyl)amino]-1,4-benzoquinones [10-12], the observed pattern may be interpreted in terms of ringchain tautomerism, i.e., formation of closed structures XIIa and XIIIa.

XIIa, XIIIa
XII, $\mathrm{R}=\mathrm{Me} ; \mathbf{X I I I}, \mathrm{R}=\mathrm{HOCH}_{2} \mathrm{CH}_{2}$.
We found that crystalline quinone \mathbf{X} underwent deethylation to give compound IV upon prolonged storage (for several months) in a vessel made of colorless glass. Presumably, this transformation occurs with participation of atmospheric moisture. When quinone \mathbf{X} was kept for 4 weeks in dioxane containing a few drops of water on exposure to daylight, it was completely converted into a mixture of solvolysis products, from which we isolated 39% of quinone IV. No transformation was observed in the dark. Analogous deethylation was reported previously for 3-chloro-2-[ethyl(phenyl)amino]-1,4-naphthoquinone which was
converted into 2-chloro-3-phenylamino-1,4-naphthoquinone upon irradiation of its alcoholic solution with sunlight [13].

All newly synthesized compounds were characterized by ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR spectra (see table) and high-resolution mass spectra or elemental analyses. The ${ }^{19} \mathrm{~F}$ NMR parameters of quinones IV-XIII were very consistent with published data for compounds II [14], III, IIa [7], 2,5,6,7,8-pentafluoro-1,4-naphthoquinone (IIb) [15], 2-(heptafluoronaphthalen-1-yloxy)-3-methoxytetrafluoro-1,4-naphthoquinone (IIc), and 2-(pentafluorobenzoyloxy)pentafluoro-1,4-naphthoquinone (IId) [7]. Fluorine nuclei in the quinone fragment (2-F or 3-F) resonated as slightly broadened singlets or multiplets, obviously due to weak spin-spin couplings with fluorine nuclei in the benzene ring. Signals from the latter appear in the ${ }^{19} \mathrm{~F}$ NMR spectra as multiplets in the regions $\delta_{\mathrm{F}} 24-27 \mathrm{ppm}(5-\mathrm{F}, 8-\mathrm{F}$) and $15-20 \mathrm{ppm}(6-\mathrm{F}, 7-\mathrm{F})$.

Quinone III reacted with 2,2'-dithiodiethanamine to give N, N^{\prime}-bis(3,5,6,7,8-pentafluoro-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-2,2'-dithiodiethanamine (XV) in 75% yield (Scheme 3). The ${ }^{1} \mathrm{H}$ NMR spectrum of disulfide XV contained signals from protons in the NH and CH_{2} groups.

The reaction of III with pyridine in moist methanol is likely to begin with replacement of fluorine in position 2 to produce pyridinium salt \mathbf{A}. The presence of a positively charged group in position 2 activates the neighboring position of the quinoid ring to nucleophilic attack, and the 3-fluorine atom in \mathbf{A} is rapidly replaced by methoxy or hydroxy group (due to the

Scheme 3.

Scheme 4.

$R=H, M e$.
presence of water in the solvent) with formation of quinone \mathbf{B}. The final product is zwitterionic 1,4-dioxo-3-pyridinio-1,4-dihydronaphthalen-2-olate (XVI, yield 90%; Scheme 4). The ${ }^{19}$ F NMR spectrum of XVI contained signals from the fluorine atoms on $\mathrm{C}^{5}-\mathrm{C}^{8}$ with equal intensities, and signals from protons in the pyridinium fragment were observed in its ${ }^{1} \mathrm{H}$ NMR spectrum.

Thus the results of the present study demonstrate that reactions of quinone III with amines ensure fairly selective replacement of one fluorine atom in the quinoid ring by amino group (obviously, due to deactivating effect of the entering amino group). The resulting 2 -aminopentafluoro-1,4-naphthoquinone derivatives attract interest from the viewpoint of their subsequent modifications at the amino group to obtain new potential biologically active compounds.

EXPERIMENTAL

The ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on Bruker WP-200SY (200.13 MHz for ${ }^{1} \mathrm{H}$ and 188.28 MHz for ${ }^{19} \mathrm{~F}$) and Bruker AV-300 spectrometers (300.13 MHz for ${ }^{1} \mathrm{H}$ and 282 MHz for ${ }^{19} \mathrm{~F}$); the chemical shifts were measured relative to $\mathrm{CD}_{3} \mathrm{COCD}_{3}$ ($\delta 2.04 \mathrm{ppm}$), $\mathrm{CDCl}_{3}(\delta 7.24 \mathrm{ppm})$, and $\mathrm{C}_{6} \mathrm{~F}_{6}$ ($\delta_{\mathrm{F}} 0.0 \mathrm{ppm}$) as internal references. The molecular weights were determined from the high-resolution mass spectra which were obtained on a Finnigan MAT8200 instrument.

1,4-Dioxane was distilled under reduced pressure $(0.1 \mathrm{~mm})$ and stored over $3-\AA$ molecular sieves. Methanol was distilled under reduced pressure (0.03 mm) and stored over $3-\AA$ molecular sieves. Diethylamine, aniline, morpholine, tert-butylamine, and 2,2'-iminodiethanol of chemically pure grade were purified by vacuum distillation (0.03 mm). Butylamine (99.5%, Acros Organics), 2-methylaminoethanol (99\%, RiedeldeHaen), and 2-(methylsulfanyl)ethanamine (95%, Maybridge) were used without additional purification. Pyridine of chemically pure grade was distilled under reduced pressure $(0.03 \mathrm{~mm})$ and stored over $3-\AA$ molecular sieves. Hexafluoro-1,4-naphthoquinone III was synthesized according to the procedure reported in [16]; 2,2'-Dithiodiethanamine was prepared as described in [17] and was isolated as the corresponding dihydrochloride according to [18].

2-Ethylamino-3,5,6,7,8-pentafluoro-1,4-dihydro-naphthalene-1,4-dione (IV). A mixture of 0.070 g $(0.556 \mathrm{mmol})$ of ethylamine hydrobromide, 0.094 g
(1.675 mmol) of potassium hydroxide, and 2 ml of dioxane was stirred for 30 min at room temperature. The precipitate was separated by centrifugation, $0.101 \mathrm{~g}(0.379 \mathrm{mmol})$ of quinone III was added to the solution, and the mixture was stirred for 2 h at $20^{\circ} \mathrm{C}$, and diluted with 10 ml of water. The precipitate was separated by centrifugation and washed with water. Yield $0.106 \mathrm{~g}(97 \%)$; after vacuum sublimation $\left(150^{\circ} \mathrm{C}, 0.03 \mathrm{~mm}\right)$, yield $0.095 \mathrm{~g}(88 \%)$, dark red crystals, mp 184- $185^{\circ} \mathrm{C}$. Found, \%: C 49.23; H 1.85; N 4.86. $\mathrm{C}_{12} \mathrm{H}_{6} \mathrm{~F}_{5} \mathrm{NO}_{2}$. Calculated, \%: C 49.5; H 2.08; N 4.81 .

2-Butylamino-3,5,6,7,8-pentafluoro-1,4-dihydro-naphthalene-1,4-dione (V). A mixture of 0.200 g (0.751 mmol) of quinone III, $0.099 \mathrm{~g}(1.354 \mathrm{mmol})$ of butylamine, and 2 ml of dioxane was stirred for 3 h at $20^{\circ} \mathrm{C}$. The mixture was diluted with 10 ml of water, and the precipitate was separated by centrifugation, washed with water ($2 \times 3 \mathrm{ml}$), and purified by preparative thin-layer chromatography on silica gel using chloroform-hexane ($3: 1$) as eluent. Yield 0.15 g (63%), bright red crystals, $\mathrm{mp} 135-137^{\circ} \mathrm{C}$. Found: $m / z 319.0618[M]^{+} . \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{5} \mathrm{NO}_{2}$. Calculated: M 319.06316.

2-tert-Butylamino-3,5,6,7,8-pentafluoro-1,4-dihy-dronaphthalene-1,4-dione (VI). An NMR ampule was charged with $0.175 \mathrm{~g}(0.657 \mathrm{mmol})$ of quinone III and cooled with liquid nitrogen, and 1.5 ml of dioxane and $0.086 \mathrm{~g}(1.17 \mathrm{mmol})$ of tert-butylamine were condensed thereto under reduced pressure $(0.03 \mathrm{~mm})$. The ampule was sealed, kept for 24 h at $20^{\circ} \mathrm{C}$, and opened, the mixture was poured into $\sim 6 \mathrm{ml}$ of water, and the precipitate was separated by centrifugation, evacuated for 2 h at a residual pressure of 0.03 mm at $20^{\circ} \mathrm{C}$, and purified by thin-layer chromatography on Silufol using chloroform-hexane (3:1) as eluent. Yield 0.128 g (62%), orange crystals, $\mathrm{mp} 186-190^{\circ} \mathrm{C}$. Found: $m / z 319.06247[M]^{+} . \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{5} \mathrm{NO}_{2}$. Calculated: M 319.06316.

2,5,6,7,8-Pentafluoro-3-[2-(methylsulfanyl)-ethylamino]-1,4-dihydronaph thalene-1,4-dione (VII) was synthesized as described above for quinone V from $0.100 \mathrm{~g}(0.376 \mathrm{mmol})$ of quinone III and $0.051 \mathrm{~g}(0.559 \mathrm{mmol})$ of 2-(methylsulfanyl)ethanamine in 1.5 ml of dioxane $\left(20^{\circ} \mathrm{C}, 2 \mathrm{~h}\right)$. Yield 0.119 g (94\%), dark red crystals, mp $136-139^{\circ} \mathrm{C}$. Found, \%: C 46.41; H 2.52; F 28.15; N 4.13. $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F}_{5} \mathrm{NO}_{2} \mathrm{~S}$. Calculated, \%: C 46.3; H 2.39; F 28.16; N 4.15.

2-(2-Hydroxyethylamino)-3,5,6,7,8-pentafluoro-1,4-dihydronaphthalene-1,4-dione (VIII). A mixture
of $0.200 \mathrm{~g}(0.751 \mathrm{mmol})$ of quinone III and 0.069 g (1.127 mmol) of 2-aminoethanol in 2 ml of dioxane was stirred for 3 h at $20^{\circ} \mathrm{C}$. The red precipitate was separated by centrifugation and washed with water. Yield $0.204 \mathrm{~g}(89 \%)$, dark red crystals, $\mathrm{mp} 159-160^{\circ} \mathrm{C}$. Found, \%: C 47.24; H 2.08; N 4.59. $\mathrm{C}_{12} \mathrm{H}_{6} \mathrm{~F}_{5} \mathrm{NO}_{3}$. Calculated, \%: C 46.92; H 1.97; N 4.56.

2,5,6,7,8-Pentafluoro-3-phenylamino-1,4-dihy-dronaphthalene-1,4-dione (IX) was synthesized as described above for compound \mathbf{V} from 0.174 g (0.653 mmol) of quinone III and $0.067 \mathrm{~g}(0.719 \mathrm{mmol})$ of aniline in 1.5 ml of dioxane $\left(20^{\circ} \mathrm{C}, 15 \mathrm{~h}\right)$. The product was purified by TLC on Silufol using chloroformcarbon tetrachloride ($1: 1$) as eluent. Yield 0.136 g (62%), red-brown crystals, mp $211-212^{\circ} \mathrm{C}$. Found: $m / z 339.03150[M]^{+} . \mathrm{C}_{16} \mathrm{H}_{6} \mathrm{~F}_{5} \mathrm{NO}_{2}$. Calculated: M 339.03186.

2-Diethylamino-3,5,6,7,8-pentafluoro-1,4-dihy-dronaphthalene-1,4-dione (\mathbf{X}) was synthesized as described above for compound \mathbf{V} from 0.174 g (0.653 mmol) of quinone III and $0.071 \mathrm{~g}(0.971 \mathrm{mmol})$ of diethylamine in 1.5 ml of dioxane under argon $\left(20^{\circ} \mathrm{C}, 2 \mathrm{~h}\right)$. The product was precipitated with water. Yield $0.2 \mathrm{~g}(96 \%)$, dark red crystals, $\mathrm{mp} 90-92^{\circ} \mathrm{C}$. Found: $m / z 319.06220[M]^{+} . \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{5} \mathrm{NO}_{2}$. Calculated: M 319.06316.

2,5,6,7,8-Pentafluoro-3-morpholino-1,4-dihydro-naphthalene-1,4-dione (XI) was synthesized as described above for compound \mathbf{V} from 0.175 g (0.658 mmol) of quinone III and $0.085 \mathrm{~g}(0.975 \mathrm{mmol})$ of morpholine in 1.5 ml of dioxane $\left(20^{\circ} \mathrm{C}, 2 \mathrm{~h}\right)$. The product was purified by TLC on a Sorbfil plate using chloroform as eluent. Yield $0.112 \mathrm{~g}(52 \%)$, dark red crystals, mp $158-161^{\circ} \mathrm{C}$. Found: $m / z 333.0422[M]^{+}$. $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~F}_{5} \mathrm{NO}_{3}$. Calculated: M 333.04242 .

2,5,6,7,8-Pentafluoro-2-[2-hydroxyethyl(methyl)-aminol-1,4-dihydronaphthalene-1,4-dione (XII). 2-methylaminoethanol, $0.102 \mathrm{~g}(1.353 \mathrm{mmol})$, was added to a suspension of $0.200 \mathrm{~g}(0.751 \mathrm{mmol})$ of compound III in 2 ml of dioxane, and the mixture was stirred for 2.5 h at room temperature. The mixture was diluted with $\sim 8 \mathrm{ml}$ of water, and the precipitate was separated by centrifugation, washed with water ($2 \times$ 2 ml), and evacuated for 2 h at a residual pressure of $0.03 \mathrm{~mm}\left(20^{\circ} \mathrm{C}\right)$. Yield $0.21 \mathrm{~g}(87 \%)$, yellow-brown crystals, mp $146-147^{\circ} \mathrm{C}$. Found: $m / z 321.04168[M]^{+}$. $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F}_{5} \mathrm{NO}_{3}$. Calculated: $M 321.04242$.

2-[Bis(2-hydroxyethyl)amino]-3,5,6,7,8-penta-fluoro-1,4-dihydronaphthalene-1,4-dione (XIII). A mixture of $0.100 \mathrm{~g}(0.376 \mathrm{mmol})$ of quinone III,
$0.059 \mathrm{~g}(0.56 \mathrm{mmol})$ of $2,2^{\prime}$-iminodiethanol, and 1.5 ml of dioxane was stirred for 3.5 h at room temperature. The solvent was distilled off under reduced pressure $(0.03 \mathrm{~mm})$, the residue was dissolved in acetone, and the product was precipitated with hexane-diethyl ether ($4: 1$), separated by centrifugation, and purified by TLC using acetone-hexane ($1: 1$) as eluent. Yield 0.042 g (32%), yellow-brown crystals, mp 147$150^{\circ} \mathrm{C}$. Found: $m / z 351.05165[M]^{+} . \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{5} \mathrm{NO}_{4}$. Calculated: M 351.05299.

2-Methoxy-3,5,6,7,8-pentafluoro-1,4-dihydro-naphthalene-1,4-dione (XIV). A reactor was charged with $0.026 \mathrm{~g}(0.188 \mathrm{mmol})$ of potassium carbonate and $0.050 \mathrm{~g}(0.188 \mathrm{mmol})$ of quinone III, the reactor was cooled with liquid nitrogen, 1.5 ml of dioxane was condensed thereto under reduced pressure (0.03 mm), and $0.018 \mathrm{~g}(0.53 \mathrm{mmol})$ of methanol was then added under argon. The progress of the reaction was monitored by ${ }^{19}$ F NMR spectroscopy. After 9 days, the mixture was diluted with $\sim 5 \mathrm{ml}$ of water. The precipitate was separated by centrifugation, washed with water ($3 \times 3 \mathrm{ml}$), and dissolved in 1 ml of methanol on heating. After cooling, the yellow crystalline solid was separated by centrifugation. Yield $0.034 \mathrm{~g}(65 \%)$, $\mathrm{mp} 189-191^{\circ} \mathrm{C}$. Found, \%: C 47.64; H 0.76. $\mathrm{C}_{11} \mathrm{H}_{3} \mathrm{~F}_{5} \mathrm{O}_{3}$. Calculated, \%: C 47.5; H 1.09.
N, N^{\prime}-Bis(3,5,6,7,8-pentafluoro-1,4-dihydro-1,4-dioxonaphthalen-2-yl)-2,2'-dithiodiethanamine (XV). A mixture of $0.050 \mathrm{~g}(0.188 \mathrm{mmol})$ of quinone III, $0.021 \mathrm{~g}(0.093 \mathrm{mmol})$ of $2,2^{\prime}$-dithiodiethanamine dihydrochloride, $0.019 \mathrm{~g}(0.188 \mathrm{mmol})$ of triethylamine, and 1.5 ml of dioxane was stirred for 2 h at $20^{\circ} \mathrm{C}$ and was then left overnight. The red precipitate was separated by centrifugation, washed with 2 ml of dioxane and 5 ml of water, and evacuated for 2 h at a residual pressure of 0.03 mm at $20^{\circ} \mathrm{C}$. Yield 0.045 g (75\%), mp 230-235 ${ }^{\circ} \mathrm{C}$. Found; $m / z 643.9919[M]^{+}$. $\mathrm{C}_{24} \mathrm{H}_{10} \mathrm{~F}_{10} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$. Calculated: M 643.9922.

1,4-Dioxo-3-pyridinio-1,4-dihydronaphthalen-2olate (XVI). Pyridine, $0.590 \mathrm{~g}(7.459 \mathrm{mmol})$, was added under argon to a solution of $0.200 \mathrm{~g}(0.751 \mathrm{mmol})$ of quinone III in 3 ml of methanol, and the mixture was stirred for 1 h at room temperature. The precipitate was separated by centrifugation and washed with methanol ($3 \times 2 \mathrm{ml}$). Yield $0.22 \mathrm{~g}(90 \%)$, orange crystals, mp $317-319^{\circ} \mathrm{C}$. Found, \%: C 55.59; H 1.55; F 23.51; $\mathrm{N} 4.29 . \mathrm{C}_{15} \mathrm{H}_{5} \mathrm{~F}_{4} \mathrm{NO}_{3}$. Calculated, \%: C 55.74; H 1.56; F 23.51; N 4.33 .

Deethylation of quinone (X). An NMR ampule was charged with a solution of $0.014 \mathrm{~g}(0.043 \mathrm{mmol})$
of naphthoquinone \mathbf{X} in 0.5 ml of dioxane, one drop of water was added, and the mixture was kept for 23 days, the progress of the reaction being monitored by ${ }^{19} \mathrm{~F}$ NMR spectroscopy. The mixture was then diluted with $\sim 3 \mathrm{ml}$ of water, and the precipitate was separated by centrifugation and purified by TLC on a Sorbfil plate using chloroform-hexane $(1: 1)$ as eluent. Yield of quinone IV $0.005 \mathrm{~g}(39 \%)$.

REFERENCES

1. Donaldson, M., The Chemistry and Technology of Naphthalene Compounds, London: Arnold, 1958.
2. Prescott, B., J. Med. Chem., 1969, vol. 12, p. 181; Lin, T.-S., Zhu, L.Y., Xu, S.P., Divo, A.A., and Sartorelli, A.S., J. Med. Chem., 1991, vol. 34, p. 1634.
3. Hodnett, E.M., Wongwiechintana, C., Dunn, W.J., and Marrs, P., J. Med. Chem., 1983, vol. 26, p. 570.
4. Ham, S.W., Choe, J.I., Wang, M.F., Peyregne, V., and Carr, B.I., Bioorg. Med. Chem. Lett., 2004, vol. 14, p. 4103.
5. Park, H., Carr, B.I., Li, M., and Ham, S.W., Bioorg. Med. Chem. Lett., 2007, vol. 17, p. 2351.
6. Lezenko, G.A. and Il'chenko, A.Ya., Ukr. Khim. Zh., 1977, vol. 43, p. 716.
7. Kobrina, L.S., Vlasova, L.V., and Yakobson, G.G., Zh. Org. Khim., 1971, vol. 7, p. 555.
8. Finley, K.T., The Chemistry of the Quinonoid Compounds, Patai, S., Ed., London: Wiley, 1974, vol. 2.
9. Burdon, J., Damodaran, V.A., and Tatlow, J.C., J. Chem. Soc., 1964, p. 763.
10. Day, J.H. and Joachim, A., J. Org. Chem., 1965, vol. 30, p. 4107.
11. Berg, H. and Zuman, P., J. Chem. Soc., Perkin Trans. 2, 2000, p. 1459.
12. Jancke, H., Radeglia, R., Tresselt, D., and Berg, H., Z. Chem., 1977, vol. 17, p. 105.
13. Vladimirtsev, I.F., Postovskii, I.Ya., and Trefilova, L.F., Zh. Obshch. Khim., 1954, vol. 24, p. 181.
14. Shtark, A.A., Shteingarts, V.D., and Maidanyuk, A.G., Izv. Sibirsk. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, 1974, vol. 6, p. 117.
15. Shteingarts, V.D., Osina, O.I., Kostina, N.G., and Yakobson, G.G., Zh. Org. Khim., 1970, vol. 6, p. 833.
16. Yakobson, G.G., Shteingarts, V.D., and Vorozhtsov, N.N., Jr., Zh. Vses. Khim. Ob-va., 1964, vol. 9, p. 702.
17. Mills, E.J., Jr. and Bogert, M.T., J. Am. Chem. Soc., 1940, vol. 62, p. 1173.
18. Nathan, A.H. and Bogert, M.T., J. Am. Chem. Soc., 1941, vol. 63, p. 2361.

[^0]: ${ }^{\text {a }}$ In acetone- d_{6}.
 ${ }^{\mathrm{b}}$ In DMSO- d_{6}.

